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An attempt is made to extend the local ~iapunov-Poincare small-parameter 
theory to piecewise-continuous systems of general form. The problem is redu- 

ced to the investigation of an infinite ordered sequence of continuous dynamic 
systems, which, in a specified sense, is analogous to the original piecewise-con- 
tinuous system for the study of the motions with a given order of switchings. 
The solutions are constructed in the form of series in powers of a small para- 

meter and, in contrast to [ l], the successive approximations to the switching 
instants are found after the construction of the corresponding approximations 
to the true solution. The conditions for the existence and the stability in-the- 
small of the periodic solutions are obtained in a form very similar to that pre- 

sented in @I. In contrast to the method of point mappings [S]. the proposed 
method is not connected with the integration of the exact equations of motion 
within the intervals of continuity and with the analysis of the successor function 
[l] obtained after such an integration, It is to be noted that in the particular 

case when the order of the system does not change during the switchings and 

the switching equations do not depend on the parameter, the existence condi- 
tions derived below turn into those obtained previously in [4]. 

1, Statement of the problem. On the differentiation of the 
rolutfon with rsrpect to a parameter. We consider an infinite ordered 
sequence of dynamic systems 

Xi’ = Xi (xi, ty k\)v i=..., -1, 0, 1,. 1 . V-1) 

where xi is a ki x’ 1 vector, We assume that if r; belongs to some region Gi of the 
characteristic phase space, and 0 ( FZ < ~0, then the h-i ): 1 vector-valued function 
Xi is analytic in al1 its arguments and the integral trajectories determined in accord- 
ance with (1.1) first intersect the hypersurface 

gi+1@% 4 11) = 0 (1.2) 

at some instant t z-- ti,l. At this instant we assume the presence of a strict correspon- 
dence between the dynamic states of the i th and the ( i f 1 )st systems, characterized 
by the equality 

xi+1 = 'I++1 (a 4 PL) (1.3) 

where Xi+] E Gi,l. The scalar gi+l and pi,, -dimensional vector-valued function 

@i+l are also anakftic in all their arguments inside Gj . Finally, we assume that a posi- 
tive integer n exists, guaranteeing the fulfillment ot the equalities 
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where T is some positive constant. 
The solving of the successive continuous systems (1.1) under conditions (1.2) and (1.3) 

permits us to make a judgement on the qualitatively defined motions of the correspond- 

ing piecewise-continuo~ va~ab~e-struct~e system with n essentially distinct switch- 
ings. The vector 2 defining the position of the piecewise-continuous system in such a 
motion at an arbitrary instant, has a number of components depending on the number i 

of the interval of continuity and 

X = Xiv ti < t < ti+lt i=..., -1, 0, 1,. * * (1.5) 

The answer to the question on the mutual correspondence of the individual components 
of vectors pi and Xi+r is always obvious from physical considerations, For what follows 
it is essential that in contrast to 1c the vector pi does not undergo a discontinuity at the 

instants ti and ti,, and that it is continuous, in general, for any real t. 
Suppose that among the numbers ko, kl,..., k,_l the smallest one is k, (k, ,( ki). 

Then the posing of the initial conditions 

where the instant t, may possibly lie outside the interval (to, tr), allows us to deter- 

mine uniquely a piecewise-continuous solution x (see (1.5)) for any real t. The spe- 

cifying at the initial instant t, of some vector Ij such that kf > k, does not allow 
us, because (1.3) is not invertible, to continue x to the side of decreasing t farther than 

some tl < ti for which first k I_1 < kl. The subfamily of solutions of (l.l), continu- 

able to both sides with respect to t , which are determined by initial conditions of type 
(1.6). evidently, include within itself all the T-periodic solutions which by virtue of 

(1.5) satisfy the equalities 
zi (t, u) = xi I 1% (t + T, P) (1.7) 

We note that as t grows all the other solutions arrive into the subfamily mentioned at 
the end of a finite interval. 

Further, using the techniques of generalized functions [5], we shall write the equations 

of motion of the successive dynamic systems in the form 

pi z Fi(xi, xi-17 t, ~1, Fi = X i5 (&) + @i)i5’ (gi) (i-8) 

Here o (gi) is the unit step defined by the formula 

3 (Bi) = P’ S-i<” it < ti) 

11, 6i>’ Ct > h) (1.9) 

5’ (gi) zzz 6 (gi) gi -:: 6 (t - ti) (1.10) 

(Here, without loss of generality, we assume rhat the function g; (xi-r, t, p) is negative 
for t < ti and positive for t > li, )The derivative o’(g;) can also he treated as if it 
were taken relative to the precedi:,;: ( i - 1 )ST system, so mar 
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G’ (gd = (2 Xi_l + $J.L) 6 tgi) 

We need to construct the solutions of systems (1.8). assuming that Xi = 0 for r ( ti. 
Let us now assume that when p = 0 the successive systems (1.8) admit of a family 

of solutions 
(1.11) 

T -periodic in the sense of (1.7) and depending on s arbitrary parameters h,,... , h, 
(s ( k,). The fundamental task of the subsequent investigation is to determine the con- 

ditions under which the sequence (1.8) with p + 0 admits of T-periodic solution which 
turns, as p -+ 0 , into one of the solutions in family (1.11). to work out an algorithm for 
the construction of such a solution for sufficiently small values of the parameter, and also 
to establish criteria for its stability in-th-small. 

Before we proceed to the solution of this problem, let us derive the equation for the 
derivative 

(1.12) 

To do this we write out the result of a formal differentiation with respect to p of both 
sides of Eq. (1.8). 

[b(&) $1 (1.13) 

Here the prime denotes the “total” partial differentiation, so that, for examole, 

(1.14) 

With due regard to (1.10) and also to the fact that the terms 

ensure one and the same jumps in the components of vector ui at the instant t = ti, 
Eq. (1.13) can be rewritten as 

or, equivalently, as 

ui’ = AiW (g+) + BiUi_15‘ (gi) + % 5 (gi) _i- I”@’ (gi) 

Ai = !i$, 
i 

Bi = * - (@; - Xi) _$ (gi'>-1 
Z-1 

Yi = 3% - (cr>( _I Xi) 2 (gi’)-l 

(1.16) 

Here Ai and Bi are ki X ki and ki X ki-1 matrices, respectively, and Yi is a 

ki X 1 vector. The validity of Eq. (1.15) or (1.16) is verified if we directly differen- 
tiate the original relations (1.1) - (1.3) with respect to p and next carry out operations 
analogous to those presented in [6]. 

2. Linerr piecawise-contlnuour cyctema. Suppose that the initial con- 
ditions determining the solutions of the sequence of Eqs. (1.8) depend also on a certain 
parameter. Then, since the right-hand side of (1.8) does not depend upon this parameter, 
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after an appropriate differentiation we arrive, instead of at (1.16). at a homogeneous 
sequence of equations 

yi’ = A&c (t - ti) + B;yi_iG (t - ti), i=.. . I -1, 0, 1,. . . (2.1) 
The piecewise-continuous system corresponding to (2.1) is obtained, obviously, from the 
original one after a variation of the initial conditions and, therefore, can be named a 

system of variational equations. The solutions of this system satisfy the superposition 
principle, therefore, it is linear and piecewise-continuous (in contrast to piecewise-linear 
system in the usual sense). 

Generally speaking, an arbitrary solution of (2.1) also is continuable only to the side 
of increase of the argument t. At the same time its solution, which exists for any real 
t and, consequently (see (1.16)), is determined by the initial condition 

(2.2) 
can be written in the form 

Ycl I,=,, = a (a) 

Yi = ui (4 t*) a (2.3~ 
Here Ui is the ki x k, matrix solution of (2. I), satisfying the initial condition 

UO (‘&, t*) = &k, (2.4) 

where Eke is the unit k, x k, matrix. 
If the original solution xi (t, p) is T-periodic in the sense of (1.7), then the matrix 

coefficients & and Bi also are T-periodic in the same sense, Hence it follows that 

the ki x k, matrix vi+,, (t + T, t*) satisfies system (2.1) and, furthermore, belongs 

to family (2.3). Therefore, we can write down 

ui+n (t + T, r*> = ui (t, t*) un (r* + T, r*) (2.5) 

In exactly the same way as in the theory of continuous linear equations with periodic 
coefficients, from relations (2.5) we can arrive at the characteristic equation 

(2.6) 
where h is the characteristic index. To an arbitrary root h of determinant (2.6) there 

corresponds a particular solution of (2.1) belonging to family (2.3) which has the form 

?Ji = ehTUi (tt p) (2.7) 

where ~‘i is T-periodic in t in the sense of (1.7). If all k, characteristic indices of 
determinant (2.6) are distinct or have prime elementary divisors, there are k, indepen- 
dent particular solutions of type (2.7), whose super~ition yields the “general” solution 

of (2.1). 
We introduce into consideration the following ordered sequence of linear systems : 

zi = - z$li [i - 5 (t - t&l - z,+&+$ (t - bl.l) (24 

Each equation (2.8) serves to define a 1 x kj vector zi and, here in contrast to (1. S), 
(1.16) and (2.1). during the integration we need to assume that zi = 0 for t > ti+l. 
Generally speaking, an arbitrary solution of the linear piecewise-continuo~ system cor- 

responding to (2.8) is continuable to the side of decreasing t. As to solutions of (2.8) 
continuable to both sides with respect to t , between them and the similar solutions of 

(2.1) there is a definite relation. Indeed, 
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-$ g wi = ; { - wlf?/f [I - 6 (t - tf+l)l - %+1~f*1!d (t - 4+1) + 
*==z-c.2 ix--00 

+ .Z*A$*O (t - ti) + Z~B#i_~8 (t - ti)) = 0 (2.9) 
We integrate this relation with respect to t in the limits from t, to t. Then, since the 
writing of (2.1) assumes that yi = 0 for t*c< ti, while the writing of (5. 8) assumes 

that zi = 0 for t > &+.I, we obtain 

%?A = ZOYO Lf* (2.10) 

The presence of relation (2.10) permits us to consider the system (2.8) as being adjoint 

relative to (2.1). 
Substituting into (2.10) the independent particular solutions (2.1) of form (2.7). we 

obtain k, mutually-inde~ndent linear first integrals of (2.8). The inversion of these 

integrals ‘leads to the forming of the general solution of (2.8), which can be represented 

in the form of the superposition of particular solutions 

zi = e-hT wi (t, p) (2.11) 

where wi is a T-periodic function of t. Hence it follows that to each index h of system 

(2.1) there corresponds an index - h of system (2.8). In particular, the number of zero 
characteristic indices coincide and, consequently, so do the number of periodic solutions 

of these systems. 

When ~1 = 0 system (1.8) admits of an s-parameter family of T-periodic solutions 
(1. ll), therefore, the system of variational equations (2.1) with IL = 0 admits of s 
mutually-independent T,-periodic solutions dqi / ah, (r = 1, . . . , s). Correspondingly, 

the adjoint system (2.8) with p = 0 also should admit of s T-periodic solutions 

which we subsequently denote by zr’ (F = 1 ,.. . , S). 

Let us consider the question of the existence of a T-periodic solution of system(l.16) 
with ~1 = 0, assuming, furthermore, that into the coefficients of this system and into 

the inhomogeneo~ terms we have substituted 
(0) 5i = ‘pi fG h,, .‘. , h,). With this aim 

let us differentiate the quantity 
OD 

with respect to t I Then. by virtue of (1.16) and (2.8), we obtain 

Here and later the parantheses denote that p, = 0, ti = ti ItLxo, xi = rppi (t, h, ,.. . , 
h,) should be substituted into the corresponding quantity. Integrating this relation with 
respect to t in the limits from t, to t, and taking into consideration that the writing 

of (1.16) assumes the validity of the equality Eli = 0 for t < ti, and the writing of 

(2:Q;)_assumes zi = 0 for t > &, we ohtain the condition for the T-periodicity of 
us In the folfowing form: n ii 

Pr(hx, . . ..h.)= 2 [ 5 ~~)(~)~~ + ~I"(ti-1)(&)~_~~_,3 = 0 t2.W 

i=l ti-l 
r== ,...,S 1 
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Thus a function .I’) , T -periodic in the sense of (1.7). corresponds only to those solu- 
tions in family (1.11). whose parameters h,,..., h, satisfy the s equations (2.13). 

8. Bxiatoncr of a !&periodic molutlon. For what follows it is essential 
that by continuing further to differentiate Eq. (1.16) with respect to p in full correspon- 
dence with the scheme described in Sect. 1, we obtain the equations for determining the 
successive derivatives @xi / 8p2, @xi / apa,.. . . All these equations are of the same 
type as (1.16)) and their homogeneous parts coincide. When ~1 = 0 their coefficients 
have the sense in (1.16) if and only if 

g&0,&$ + 0 (3.4) 

Let us assume that this inequality is fulfilled. Then, after the determination of the func- 

tions 9 (t, 0) as a result of solving the one-type systems, linear in the intervals of con- 

tinuity, we can successively determine the functions ui to) = axi/ap, a2xi I ap,... 
and next compose the formal equality 

xi(t,~)=Xi(t,0)+~~)CL+5(~)~~+~3... (3.2) 

By virtue of the assumptions made concerning the properties of the original piecewise- 

continuous system, the series occurring in the right-hand side converge for sufficiently 
small p. The proof of this fact is carried out in exactly the same way as in the conti- 

nuous case. 
The switching instants ti (/_L), necessary for the determination of the piecewise-con- 

tinuous solution (1.5), are defined by the series 

(3.3) 

To determine the coefficients of this series it is necessary to differentiate relation(l.2) 

an appropriate number of times with respect to p for t = ti (p). Here, obviously, 

dti -=- 
dP 

Hence it is clear that a correction of order ~j (1 = 1, 2,. . .) to the instant ti (p) 

is determined only after the functions (ajxi/a~J) have been found. Let us now return 

to the solving of the fundamental problem stated in Sect. 1 . We seek the existence con- 
ditions for a T-periodic solution of the original piecewise-continuous system, which 

turns into a generating solution belonging to family (1.11) when p = 0 Here, without 
loss of generality, we assume that the unknown solution xi (t, ~2, CL) satisfies initial 
condition (1.6) where t, = t, (0) and, consequently, 

x0 (to 0, a, cl) = a 
(3.S) 

Initial conditions (3.5) differ from the initial conditions corresponding to the generating 
solution by a correction which vanishes together with 11. Therefore, 

a (l-4 = a (0) + Y (CL) (3.G) 

where the ( k, x 1 )-dimensional correction y (CL) tends to zero as p -+ 0. By de- 
creasing ~1 we can always achieve the required smallness of correction y, therefore, 
the T-periodic function Xi (t, a, pc) can be expanded into a series in powers of /.L and 
y, which converges for a sufficiently small CL. If, furthermore, the components of cor- 
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rection r themselves are analytic in p, then the ~ROWR solution is represented in the 
form of the following series in powers of p: 

2i (t, p) = rpi (t, ftr, . . .+ h,) + fpp + pa. . * (3.7) 

Here the series coefficients themselves are T-periodic in t and, in particular, ~~(0) 
is a T-periodic solution of (1.16). 

The nature of the dependency of the components of y on p, as equally also the very 
possibility of determining them, emerge during the investigation of the periodicity con- 

ditions which are written in the form of the following k, x 1 vector equation: 

y (rt I-4 = &I &I (0) + T, d (0) + v, FL) - a (0) - y = 0 f3.8) 

The structure of Eqs. (3.8) is completely analogous to the structure of the corresponding 
equations in the theory of periodic solutions of analytic nonautonomous srjtems with a 

small parameter in the case of an unisolated generating solution r2]. Here, therefore, 

by completely analogous reasonings we can show that for a solution r (p) , analytic in 

p. , of system (3.8) to exist, the presence of simple solutions in the first-appro~mation 
equations 

G-9) 

is sufficient. Let us consider these equations in detail. By virtue of (3.8) we can assert 
that f3Y -= 

a 
u, (to -t- T, to) - Er. (3.10) 

where ui (t, to) is a ki X k, matrix solution ofsystem (2.1) with a unit initial mat- 
rix (2.4) under the condition that t, = ta. On the other hand, 

Here ui’ is the solution of Eq. (1.16) with p = 0, which, in contrast to ~~(0) is not 

T-periodic but is determined by virtue of (3.5) by the zero initial conditions 

uo’ L,(o) = 0 (3.12) 

We multiply Eq, (3.9) from the left by the 1 x k, row-vector z,@f (t, (0) + T) . As 
a consequence of (2.4) and (2.10) we have 

‘:) ( )‘n) /f-t, (0) + T = ‘t) It=t. (0) (3.13) 

Hence, because of the T-periodicity of the function zi(r) , instead of (3.9) we obtain 

GPn It+ (O).+T = 0 (3.14) 

On the other hand, me function ~6~’ exists for any real t and, consequently, relation 
(2.12) is valid for this function, By antedating (2.12) in the limits from t, (0) to 
to (0) + r and taking (3.12) into account, we obtain 

2:’ %z’ ll=I. (@+T = p, @I* * - *, k) (3.15) 

Thus, the result of eliminating the components of y from system (3.9) can be written 
in the form of s equations in s unknowns 

P,(h,,...,h,)=O (3.16) 

which coincide completely with Eqs. (3.13). Thus, for a T-periodic solution to exist 
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it is sufficient that system (3.16) adlnit of a simple solution, i.e. one for wilich 

a (PI, . . ., P,) 
a (h, . . .I h,) +$=o (3.17) 

4. Stability of a T-periodic tolutlon. The variational equations (2.1) 

are obtained as a result of a formal differentiation of the original Eqs. (1.8) with respect 
to a parameter connected with the initial conditions. Therefore, together with (3.1)) 

the following symbolic notation 

yi’ = ZYi + +$Yi-l (4.1) 

is also valid, which essentially coincides with the homogeneous part of Eq. (1.13). Here 

we need to keep in mind.that the differentiation with respect to the vector xi is carried 
out in exactly the same way as with resepect to a parameter not depending on time.The 
subsequent investigation of the stability in-the-small of the T-periodic solution being 

considered is carried out on the basis of variational equations in the form (4.1). This 

simplifies the calculations significantly and permits us to illustrate visually the analogy 
between piecewise-continuous systems and systems which are continuous and analytic. 

Thus, we turn to the determination of the “critical” particular solutions of form 
(2.7) of the system of variational equations (4.1). constructed close to the T-periodic 
solution being considered. Following the method presented in r23, the successive appro- 
ximations to the critical characteristic indices will be found during the determination 

of the T-periodic solutions of the system 

Vi = z Vi + 
f3Fi 

i 
-v.- - hUi (h jpao = 0) 
azi_l * l (4.2) 

In the nonautonomous case being considered, system (4.2) with p = 0 admits of s 

independent T -periodic solutions tY(pi / dh, (r = 1,. . ., s), while the determinant 

(2.6) has an s-fold zero root, corresponding to these solutions, with/prime elementary 
divisors. Therefore @], a T-periodic solution of system (4.2) is analytic in /.t, so that 

l_?i=U~)+~U~)+/-t2~~*, h = Ail-t + /Aa. . . 

and in the generating approximation (/A = 0) we have 

(4.3) 

Here a,,..., as are certain mutually independent constants. 

The equation for the T-periodic correction $1 is obtained if we differentiate (4.2) 

with respect to /t and then set p = 0, and has the form 

We recall that the prime here, as also earlier, signifies total partial differentiation, while 
the parentheses signify that the corresponding quantity is computed in the generating 
approximation. We note further that by virtue of the original equations of motion (1.8) 

we have 

Here we have in mind the solution ICY (t, h,,.. ., hS, p), of the original system, which 
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is T-periodic only if the constants hl,..., it, satisfy system (3.16). 
On the other hand, 

Therefore, keeping (4.4) in mind, Eq. (4.5) can be rewritten as 

By virtue of the last equation. since in its right-hand side the quantity Mt 1 &-x can 
be replaced by Bi8 (t - tr), we obtain 

In the derivation of relation (4.9) the summation index I” in Eq. (4.8) is changed to 4 
and the order of summation over i in the third term inside the brackets is shifted by 

unity (i - 1 is replaced by 8). F~thermore, fulfillment was assumed of the orthogo- 

nality and norming conditions 
z(r) ??!! = 6 

2 ah, 9’ 
(4.10) 

i=--00 
where 6,, is the Kronecker symbol. In relation (4.9) the brackets include the expression 

coinciding with (2.8) for t < ti+r . The writing of (2.8) assumes that zrJ = 0 for 
t > It+1 . Therefore, the co~es~nding term from (4.9) vanishes. Consequently, by 

integrating (4.9) in the limits from t,, (0) to t, (0) = t, (0) + T, we obtain 

By virtue of the T periodicity of the functions zr) and u$Oj , with due regard to (2.12) 

we have 

(4.12) 

Consequently, the condition for the T periodicity of function VP) is written as 
I 

(4.13) 

Thus, similarly to what holds in the continuous case [2], in order for the T-periodic 
solution being considered of the nonautonomous piecewise-continuous system to be stable, 
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it turns out to be sufficient that all the roots hr’ 

I 
ap, 
- - h,T&,, 
dh, 

,.. ., hf”’ of the s th-degree equation 

I = 0 (4.14) 

have negative real parts. It can be shown that a similar correspondence is preserved also 
in the autonomous case as well as in the more complex cases when the critical charac- 
teristic indices for l.& = 0 have nonprime elementary divisors. 
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ON STEADY CAPILLARY-GRAVITATIONAL WAVES OF FINITE AMPLITUDE 
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The problem of steady capillary-gravitational plane waves of finite amplitude 

at the surface of a stream of perfect incompressible fluid over an undulating 
bed under constant surface pressure is considered. The intersection of the un- 
dulating bed surface with the vertical plane is assumed to be a periodic curve 
whichis called the bed line and specified by an infinite trigonometric series. 
An exact solution of this problem, which reduces it to a system of nonlinear 

integral and transcedental equations, is presented. The theorem of existence 
and uniqueness of solution of that system is obtained on the assumption of 
smallness of the bed line amplitude. The method of proving this theorem is 
indicated and the method of deriving solutions with any degree of approxima- 


